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Abstract. The infinite-U one-dimensional Hubbard model is 'solvable' in the limit that the 
nearest-neighbour hopping is dominant and infinitesimal longer-range hopping lib the one- 
dimensional spin degeneracy. In this limit the Hubbard model maps onto an effective spin 
interaction: cyclic or ring exchange with a variety of lengths and strengths. For bipartite 
geometries we find a region of stable ferromagnetism. which originates from the mechanism 
intrinsic to Nagaoka's ferromagnetism. We look at connectivities that limit exactly to the square- 
lattice connectivity as the range of the infinitesimal hopping diverges. When we extend lhis 
hopping range, we find that the stable region of ferromagnetism shrinks. evenhlally vanishing as 
the infinitesimal hopping range diverges and we limit to the squawlattice geometry. Since the 
calculation involves a non-trivial density of particles in the thermodynamic limit, it suggests how 
the proposed region of ferromagnetism may become lost for the case of the lwodimensional 
square lattice, as numerical simulations predict. 

1. Introduction 

The advent of perovskite superconductivity has induced fresh and protracted study of the 
phase diagram of the Hubbard model [I]. Although the model is quite simple, the physical 
limit suggested by the experiments involves the electronic motion being dominated by 
the Coulombic repulsion, the so-called strong-coupling limit. which is extremely difficult 
to understand. Although in the real materials there is clearly a strong antiferromagnetic 
interaction, it can be argued that as the doping is increased the effect of the antiferromagnetic 
interaction becomes less relevant, and by the time that the system is metallic the physics 
is being controlled by the hole motion [Z]. This is by no means an accepted fact, with the 
competition between antiferromagnetic exchange and hole motion being the most heavily 
studied model [3], but the physics introduced by the hole motion is definitely an important 
area to investigate. We will restrict our attention to the extreme limit of U = CCI where the 
antiferromagnetic interactions are completely eliminated and the spin physics is controlled 
by the charge motion. For this limit the model becomes marginally simpler, reducing to the 
single-parameter model, the t-model: 

(1.1) H = --t1 C(1 -c~,c;a)cf,c;.,(l - c;,,ci,a) t 
(ii')O 

where ciO t (ci,) creates (annihilates) an electron of spin U (complementary spin 5) on an 
atom i. The model hops electrons between nearest-neighbour atoms, denoted by (ii'), and 
the factors (1 -c$ci:) ensure that sites can never become doubly occupied, hence enforcing 
the constraint that one charge state for each atom is eliminated: that with two electrons on 
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the atom. This model yields a single line on the Hubbard model phase diagram, and need 
only be solved as a function of band filling. 

This particular limit has been studied previously, with two basic results surfacing: firstly, 
for the low-density limit one expects Kanamori paramagnetism [4], and secondly, for the 
high-density limit (near half filling), one might expect Nagaoka ferromagnetism [5]. The 
most interesting phase is clearly the paramagnetic phase, which would be expected to 
correspond to the limit found in perovskite superconductors, under the caveat that the hole 
motion is the dominant physical interaction. We will not be concerned with this paramagnet 
here, but rather we will be looking at the less interesting phase of Nagaoka ferromagnetism. 

Nagaoka ferromagnetism is controversial. The initial work, performed by Nagaoka. 
involved the study of a single hole in an otherwise pure bipartite geometry [ 5 ] .  It is fairly 
straightforward to rigorously prove that the ground state to this problem is ferromagnetic, 
although the energy involved in the degeneracy breaking is incredibly small. Taking this 
result at face value, one would then like to deduce that when a low density of holes is 
introduced, they will each induce a region of ferromagnetic polarization around themselves, 
all of which can align to yield a long-range ferromagnet. So desirable is it to make these 
statements, that it has even been suggested that a pnir of holes will feel an attractive force, 
since each hole can make use of the other hole's ferromagnetic region, gaining additional 
room to move in and consequently lowering kinetic energy [6]. Unfortunately, the numerical 
simulations do not agree with this picture, and indeed, usually one finds a low-spin ground 
state in contradiction with this picture. Even for the lowest doping of two holes, where one 
might naively expect maximum benefit from the interaction, one finds a total-spin singlet 
ground state. There is a variety of calculations in the literature, both analytic and numerical, 
that show evidence for [7] and against [SI Nagaoka ferromagnetism. 

It is crucial to reach the thermodynamic limit with afnite hole density in addressing 
this issue. In this article we will look at models for which there is a region of Nagaoka 
ferromagnetism in the thermodynamic limit, and we will study the stability of this phase. 
It is the issue of how this phase is destroyed in the thermodynamic limit that is of major 
concern in an attempt to understand how the ferromagnetism might become lost in the 
two-dimensional square lattice. 

The major flaw in the argument supporting Nagaoka ferromagnetism in the 
thermodynamic limit is that the most violent force between the particles has been omitted 
in the discussion: fermionic statistics. A single hole moving around has no statistics, 
because it has no other holes to exchange with. However, two particles moving around 
in a ferromagnetic region repel each other much more strongly than a pointwise repulsion, 
since antisymmetrization of the pair wavefunction restricts each electron to only effectively 
halfthe region, since there exists a direction parallel to which the electrons never exchange. 
It has been previously suggested [9], that by a judicious choice of spin wavefunction, the 
motion of the holes can cease to be controlled by Fermi statistics and can become similar 
to that of hard-core bosons, with the holes freely able to orbit each other with consequently 
more room to move in and more kinetic energy available. The problem is the choosing of 
this spin wavefunction, which has proved amazingly subtle to think about. 

Although we have made little progress with the two-dimensional model of most interest, 
we have found a class of models that are tractable, and are not too far removed from the 
two-dimensional systems. Recently, the present authors have shown how to map one- 
dimensional systems with dominant nearest-neighbour hopping and infinitesimal longer- 
range hopping onto effective spin models [IO]. The fundamental idea is that the spin 
and charge degrees of freedom separate for these models. The charge degrees of freedom 
remain identical to the spinless Fermi gas at the level analysed, but the one-dimensional 
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spin degeneracy is lifted by the longer-range hopping, and exhibits a variety of possible 
characteristics. We were able to find the phase diagram for very short-range hopping, and 
found a finite region of stable Nagaoka ferromagnetism [lo]. In this article we introduce a 
sequence of models that have hopping increasingly similar to the square-lattice model, and 
find bounds on the region of stable Nagaoka ferromagnetism. The basic result is that as the 
range of hopping is increased, so the region of stable ferromagnetism shrinks, eventually 
vanishing in the limit of infinite-range hopping. 

In section 2 we briefly review the mathematical method of solving the models. In 
section 3 we evaluate bounds on the region of stable ferromagnetism and in section 4 we 
perform some numerical simulations to show that some of the calculations are probably 
exactly correct. In section 5 we conclude. 

2. Mapping to a spin Hamiltonian 

The fundamental reason that we can solve our class of models is that the spin and charge 
degrees of freedom become completely independent. In general, even when we have spin- 
charge separation, this independence is lost, and is only reestablished in the low-energy 
limit. 

In order to successfully describe the behaviour of the one-dimensional Hubbard model, 
we need to use a representation for which the charges can move while the spin order along 
the chain remains frozen. To this end we have introduced a representation for which the 
spins and charges are separated: 

(2.1) t t  t ci,.,ci,s...ci"o; I O )  = A:&&; I mluz...%) 

where the f, t operators are assumed fermionic and control the motion of the charges alone, 
and the spins are ordered along the chain and are controlled directly with spin operators, 
Sa. In terms of this representation, the original hopping becomes 

where the xi measure whether or not an electron is on a particular site i ,  and in terms of 
which the CY! = cm=, xm count how many electrons come before a particular site, making 
a useful spin label. The first two f operators move the charge. The summations over the 
,y variables break the states down into all possible charge configurations between the two 
end points of the charge transfer. The operator involving the z-component of spin ensures 
that the electron moved has the correct spin, and the final spin arrangement conserving the 
spin order along the chain is effected by 

which involves a string of spin operators, which shuffle the spins along conserving their 
order along the chain. Each term 
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provides an elementary permutation of the two spins involved, and so the product is just 
a simple cyclic permutation of the relevant spin variables. Due to the central role that 
these cyclic permutations hold in our analysis, we have introduced a notation for such a 
permutation, and we are using the letter R to represent the idea of 'ring exchange', 
which is often how this concept has been labelled in the literature. 

The inclusion of longer-range hopping is accomplished by 
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where the tl+% are infinitesimal matrix elements of variable rehtfve magnitudes. We have 
presumed that the lattice is bipartite, and so we have restricted attention to hops behoeen 
the two natural sublattices. The details of OUT transformation and how to apply it can be 
found elsewhere [lo. 111, and we will only briefly explain the results of direct relevance to 
the current phase boundary argument here. We can perform degenerate perturbation theory 
immediately using (2.2), yielding: 

where the matrix elements, K", can be deduced from 

where the &function ensures that exactly the correct number of electrons are involved in 
the exchange, the periodicity inherent in the chargemotion ground state ensures that we 
may consider a particular site to measure correlations from, and we must evaluate these 
correlation functions for the spinless fermion ground-state wavefunction. The form of this 
result is quite easy to understand when an electron is hopped across r - 1 atoms, it 
passes a variable number of intermediate electrons, n say. The spin wavefunction incurs 
a cyclic permutation, involving the spin on the hopping electron and the spins on the n 
electrons passed over. Obviously, the maximum number of spins occurs when the chain is 
completely filled between the two ends of the hop, and so n 4 r ,  explaining the restriction 
in our summation. The strength of the resulting interaction is controlled by the motion of 
the fermions in our charge ground state: the free-fermion gas. To contribute to a specific 
cyclic permutation, we must have precisely n electrons between the ends of the hop, and 
contributions to the charge ground state from situations where both the initial and final 
charge configurations occur. The correlation functions in equation (2.6) measure precisely 
these likelihoods. 

The effective spin interaction for our model is therefore just a superposition of ring 
exchanges over all ranges up to the maximum hopping range. The matrix elements for these 
interactions are controlled by the probabilities of finding the relevant spatial configurations 
of fermions in the spinless fermion ground state. We can rerepresent the spinlessfermion 
correlation functions as determinants and then evaluate them [ll], either analytically for 
small systems or numerically for large systems. 
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3. Phase boundaries 

In this section we will develop some analytic bounds on where the phase boundary between 
saturated ferromagnetism and a second phase might be. We will consider some classical 
states and deduce when the ferromagnetic ground state becomes unstable with respect to 
them. Although these calculations only provide a lower bound, we believe that sometimes 
these calculations yield the hue phase boundary. Numerical evidence for this assertion 
will be presented in the next section. Unfortunately, due to the variational nature of our 
calculations, we cannot rule out another type of instability, which occurs prior to ours, 
allowing the system to transit into a phase with less interesting physics. For example, one 
could conceive of a weird form of ferrimagnetism, with only a minor distortion away from 
ferromagnetism. We cannot discount this possibility, although we do not believe in it. 

........ ... t' -- - y- 3 

..... ........... 

..... ..................... _ .............. ".. ...... 

..... ........ U L! I 

Figure 1. The two geometries under current investigatioo. The bold lines denote the strong 
one-dimensional hopping, and the dashed lines denote the infinitesimal additions. Black circles 
correspond to atoms. 

We will consider two distinct geometries, both of which can be chosen to limit to 
the two-dimensional square lattice, although in rather different ways. We depict the two 
geometries in figure 1: the first geometly breaks translational symmetry, and involves a 
distribution of bonds of different ranges, whereas the second geometry retains translational 
symmetly and includes only equal bonds. We can limit to the square lattice in a two-stage 
process: firstly we can allow the range of the hopping to diverge, and secondly we can 
increase the strength of the bonds until all the bonds are of equal strength. In this article 
we will deal with the first process, yielding infinite-range bonds in the limit, but we have 
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been unable to make significant progress in increasing the strength of the bonds above 
infinitesimal. 

The first classical state that we consider is that where we force the two natural sublattices 
to be saturated, but allow them to rotate in opposite directions and pick up an angle 0. Since 
the overlap between any two classical states with two spin-f atoms at relative angle e is 
cos2(B/2), we can evaluate the overlap between any configuration that occurs from our 
ring-exchange interactions and the original state. The calculation is just a direct evaluation 
of (2.2), where the charge Hamiltonian is the spinless Fermi gas, and we have to evaluate 
the ring-exchange correlation functions for our classical spin state. We look at each range 
of hopping in turn, evaluating a spread of ranges by summing the results. It proves useful 
to define the function 

in terms of which the energy of our classical state is 

which follows directly from resumming (2.2). using the result that: 

(&,) = (io,2-l) = cosZ”(e/z). (3.3) 

It has previously been shown Il l ]  that 

(3.4) 

... na-2 nb-1 
n o -  ... nh-3 n2-2 

... na-4 n2n-3 

I 
nl n 0 - K  nl 

1 

f ( x )  = (1 - x ) ”  ... 
I n2n nb-1 n2n-2 ... nl n 0 - E  

nb-, ... nz nl 

from which we can immediately deduce the energy, &(e), in terms of the single-particle 
correlations of the free-fermion gas 

where no is the original electron density. 
The function f n ( x )  is quite easy to differentiate, yielding a sum over 2n determinants, 

each of which is identical to f n ( x ) / ( x  - 1) with the exception that one out of the 2n terms 
1/(1 - x )  is missing. Given this result it is relatively easy to hunt out the characteristics of 
the function En@). 

Close to ferromagnetism, viz. b’ = 0, the behaviour is much simplified. As should be 
expected, the determinant collapses down to one term 

EAO) = -fl+Znm+2n (3.6a) 

and the derivative simplifies to 
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which can be evaluated with a single determinant. If the instability were towards an 
infinitesimal angle, 0, then the phase boundary would correspond to a zero in this derivative, 
marking the degeneracy between ferromagnetism and the ferrimagnet. Direct numerical 
calculations at non-zero 0 have shown that the first instability does indeed occur towards 
infinitesimal rotations, and we have evaluated the predicted phase boundary for our two 
geometries as a function of inverse range in figures 2 and 3 for the spread of ranges and 
a single range respectively. One feature seems immediately clear: as the range of hopping 
diverges, so the phase boundary converges towards unity. 

1 

0 . 9 5  

0 . 9  

0 . 8 5  

0 . 8  

0 . 7 5  

0 . 1  

0 . 6 5  

0.6 

P h a s e  B o u n d a r y  S c a l i n q  

F 

+ 

0 . 2  0.4 0 . 6  0.8 

Figure 2. The phase boundaries between ferromagnetism and the classical spin states explained 
in the text, for the geometry with a spread of bond ranges. We plot the phase boundary as a 
function of inverse range (I/n) for the infinitesimal bonds where the bond length is 1 + 2n. 
Crosses correspond to an inhnitesimal ferrimagnetic distortion and plus signs correspond to an 
infinitesimal spiral distortion. 

Although this ferrimagnetic instability appears to dominate at short-range hopping, at 
longer range we have found that a classical spiral appears to become favourable. We 
will now introduce this second classical state. The development is very similar to the 
previous case, with the two-sublattice ferrimagnet being replaced by a classical uniform 
spiral, rotating through an angle C$ from spin to spin. 

It is straightforward to evaluate the the ring-exchange correlations for the spiral, and 
we find 

($,J = COS’UP) COSWP) (3.7) 
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li 
+ 

I L 
0 0 . 2  0.4 0 . 6  0 . 8  1 

F l y r e  3. The phase boundaries beween ferromagnetism and the classical spin states explaincd 
in the text, for the geometly with a single bond range. We plot the phase boundary as a function 
of inverse range (1111) for the infinitesimal bonds where the bond length is 1 t 2n. Crosses 
correspond to an infinitesimal ferrimagnetic distortion. plus signs correspond to an infinitesimal 
spiral distortion and diamonds correspond to a finite pitch spiral chosen with the optimum pitch. 

where the large rotation originates from the spin that has moved over the long distance. 
The geometric nature of this result leads immediately to the result 

for the energy of the state F,,(@). 

slightly more sophisticated dependence on @, but one can soon show that 
The behaviour close to ferromagnetism is rather more difficult to derive, due to the 
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(3.9) 

a rather simpler result for the phase boundary. We have plotted the resulting phase 
boundaries for this classical state in figures 2 and 3, and once again we can see that as 
the range of hopping diverges so the phase boundary to this type of instability converges to 
unity. 

Unfortunately, there is a complication to these simple results: the instability is not 
necessarily towards an infinitesimal angle. Although for the case of a spread of ranges we 
find that the strongest instability’is towards an infinitesimal spiral, for the single-range case 
we find that the infinitesimal spiral is less potent than the ferrimagnetic instability, but that 
the strongest instability of all is to a classical spiral with afnite pitch. The pitch of the best 
spiral is tuned to the electron density, with a rough guide that the spiral turns through 2n 
between holes along the chain, with the instability occuring when the holes are on average 
about the same distance apart as the range of the additional infinitesimal bond (2n + 1). 

Instabilities to infinitesimal classical distortions will yield precise phase boundaries even 
for the quantum case, whereas finite-pitch spirals will necessitate quantum fluctuations, 
which will play a role in the energetics. Although we would expect a phase transition 
exactly where the analytical calculation predicts for the case of a spread of ranges, we 
would expect that the analytical calculation would only predict a lower bound for the case 
of the single-range geometry. We give numerical evidence supporting these assertions in 
the next section. 

The physics anticipated from the two instabilities that we have considered is very 
different. For the two-sublattice ferrimagnet, we would still expect the behaviour to be 
dominated by the huge ferromagnetic moment, whereas the spiral phase is expected to be a 
low-spin magnet with subtle properties. The reader should bear in mind that the solutions 
predicted are spin-charge separated, and so the spin-state magnetism is convoluted with 
the metallic charge state yielding only minor, if any, residual spin correlations observable 
with normal experimental probes [ll]. For both cases we find a spiral solution is ultimately 
the predicted spin state, making a connection with previous proposals for such a possibility 
[121. 

4. Exact diagonalization studies 

The analytical calculations for the phase boundaries described in the previous section were 
all lower bounds to the actual phase boundary. Although we can say that the ferromagnetism 
will be unstable with respect to some secondary phase, we cannot say with certainty what 
this second phase is, nor can we tell the particular moment at which the transition will 
occur. In order to investigate whether or not our predictions are overshadowed by some 
as yet unconsidered physics, we have performed some finite-size scaling studies of some 
exact-diagonalization calculations on the effective ring-exchange spin models. 

By the horrendously numerically intensive procedure of evaluating each of the - 2” 
determinants in equation (2.6), we can calculate the coefficients, K,, in the effective ring- 
exchange spin model, for any chosen electron density and hopping range. These coefficients 
can then be inserted, as bond strengths, into a Lanczos exact-diagonalization calculation for 
the spin wavefunction of a finite system. Obviously, the type of model that we can analyse 
is severely res@icted by the very small system size necessitated by this technique. Since we 
can only handle around twenty-four spins, we are restricted to hopping’ranges of at most 
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n = 4. and even for this case the chains of up to eight yield ‘inconsistent’ interactions and 
cannot be included. 

Due to the fact that we arc looking for phase transitions, we have elected to present only 
a small selection of total-energy calculations. We have chosen to plot e ( N ) / N ,  an intensive 
energy, in order that different states will converge to finite values. This choice leads to 
complications, since as the system size increases, so the density of excitations increases 
and the low-lying excitations collapse down onto the ground state, complicating the picture. 
One must be aware of this when attempting interpretation, and must focus on the relative 
order of energies and not their absolute values. 

In order to assist in interpretation there are a few fundamental ideas that should be born 
in mind. Firstly, a ferrimagnetic solution can be identified by a steady precession of ground 
states with increasing total spin. Since the ratio of magnetic moment to maximum moment, 
mjM say, converges to a finite fraction, the magnetic moment must steadily increase. 
Secondly, a spiralling solution will involve a type of ‘beating’, as the length scale from the 
spiralling ‘interferes’ with the length of the chain. We would expect a sequence of total-spin 
singlets to yield the ground state, with one additional spiral in each subsequent state, and 
the period between such states defining the ‘pitch’ of the spiral. Thirdly, the difference 
between first-order and second-order transitions should also be immediately apparent, For 
a second-order transition there is a ‘continuous’ sequence of excitations that carries us from 
one type of ground state to the other, and when there is a phase transition this sequence of 
excitations should invert. For a first-order transition lhere should be no direct relationship 
between the two phases and the excitations of each phase should remain above the ground 
state, viz. two independent superimposed spectra should simply ‘slide’ past each other. 

We will deal with the case of a spread of bonds first, because the analytic prediction 
is straightforward: for all possibilities we predict a classical instability to an infinitesimal 
distortion. For the cases of the range, 1 $- 272, being n = 1,2 or 3. we expect an instability 
to a two-sublattice ferrimagnet, while for ranges of n > 3 we anticipate an instability to a 
total-spin singlet spiral state. 

In figure 4 we have finite-size scaled the total energy per spin against inverse system 
size for two concentrations of electrons and the case when there are two available hopping 
ranges. The transitions occur at n,, = 0.731 92 for the spiral and ne2 = 0.75847 for the 
ferrimagnet. The first density should find both states stable, whereas the second should find 
only the ferrimagnet stable. We have scaled states of two varieties: solid lines denote states 
whose difference from the maximum spin is fixed and usually small, whereas dotted Lines 
denote states whose absolute spin is fixed and small. For both systems, the character of 
the ground state changes in such a way as to suggest that there is a preferred ferrimagnetic 
moment (as the system size increases, the expected value of total spin rises in such a way 
as to keep the ratio approximately constant). The calculations are in good agreement with 
the analytical predictions from the last section, that the ratio of the magnetic moment to 
its saturated value should be m / M  = 0.548033 for no = 0.7 and mjM = 0.896 133 for 
no = 0.75. The low-spin states do not scale very smoothly, which may indicate that there 
is no ‘metastable’ spiral phase. There is no new state observable that could overturn our 
classical predictions. 

In figure 5 we have finite-size scaled the total energy per spin against inverse system 
sue for two concentrations of electrons and the case when there are four available hopping 
ranges. The transitions occur at n,, = 0.84648 for the spiral and ncz = 0.84308 for the 
ferrimagnet. The first density should find both phases stable and the second density should 
find neither phase stable. The results are in good agreement with this picture, with the 
low-spin state clearly being preferred in the first case. The results clearly depend strongly 
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on range, although the predicted angle, @ = 0.118921n, does not appear to agree well with 
with the spiral picked out by our choice of periodic boundary conditions. The tiny loss 
of moment m/M = 0.981 585 also for the first case is clearly unobtainable for our small 
systems. The strange ‘crossover’ behaviour comes from the spiral phase at k = 0 becoming 
relatively stable against saturated ferromagnetism under the action of the weakening effect 
of the periodic boundary conditions. This indicates that the phase transition is probably 
second order. Once again, there is no signature of a new piece of physics that is likely to 
overwhelm the picture of a classical instability. 

These results, together with various other unmentioned calculations, give us confidence 
that, for the system with a spread of hopping ranges, the ferromagnetic state is unstable with 
respect to a classical instability involving either ferrimagnetism for short-range hopping or 
infinitesimal spirals for longer-range hopping. 

We now turn our attention to the single-range hopping model, for which the classical 
predictions are more involved. In figure 6 we have finite-size scaled the total energy per 
spin against system size for two concentIations of electrons and the case where we hop 
only to the third possible range. The second-order transitions occur when n,, = 0.845 24 
for the spiral and n a  = 0.857 36 for the ferrimagnet. For this case, however, the lowest 
classical instability that we found was at nc3 = 0.8618, and the instability was to apnite 
spiral of pitch 0 . 4 6 2 9 ~ .  Neither of our chosen densities should yield a classical instability, 
although it is clear from the calculation that our first choice has a low-spin ground state 
and our second choice does not. As expected, quantum fluctuations are relevant for this 
case and further stabilize the classical spiral with finite pitch. The additional stabilization 
is quite weak however, amounting to a concentration of only about 1%. There is a clear 
length scale in the singlet ground state, which can be picked out as the ‘beating’ with the 
length of the chain, and this length scale is similar to the predicted classical spiral pitch. 
Also there is no continuous branch of excitations connecting the two types of ground state, 
and so we presume that this is a first-order transition. as expected. 

Once again, the classical predictions are born out by the numerical calculations, although 
now the classical results are only good to about 1%. The results for the single-range hopping 
model suggest a first-order instability to a quantum-mechanical spiral state with finite pitch. 
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5. Conclusions 

For the two very particular models presented, we have shown that long-range hopping 
weakens Nagaoka ferromagnetism, eventually eradicating it in the limit that the range of 
hopping diverges. The phase that replaces the ferromagnetism has been predicted to be a 
spiral phase, although the quantum mechanics of the spins almost certainly tempers this 
result. 

We attribute this result to the spin-charge separation, with the judiciously chosen spiral 
including phases that compensate the statistical Fermi phases from exchange, allowing the 
holes to hop over each other with a more hard-core-boson-like character. The very best 
single-particle state we believe to be the Nagaoka ferromagnet. and so we would promote 
any lack of Nagaoka ferromagnetism in the square-lattice Hubbard model as being evidence 
that the system favours a more collective ground state. 

The instability predicted in our analysis is fairly easy to understand: when there is 
a single hole, Nagaoka’s theorem enforces ferromagnetism. The physical cause of the 
ferromagnetism is the hole circling around closed loops. For a bipartite geometry, a 
complete path around a loop involves a cyclic permutation of an odd number of fermions. 
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This in turn ensures a posifive statistical phase. Phase coherence is therefore guaranteed 
by ferromagnetism. The problems occur when holes circle loops in which other holes are 
present. The 6rst example of this occurs when the inverse of the density of holes, viz. 
their average separation, becomes equal to the length of a relevant loop. For this case, 
on average, there become hvo holes in a loop, and circulation occurs via exchange. Since 
there is now an even number of fermions involved, there is a negative statistical phase and 
we would obtain phase cancellation in a ferromagnet. If we include a slow spiral into the 
spin wavefunction, then we can compensate the statistical phase with a phase in the spin 
wavefunction, reinstating phase coherence for the hole motion. We would require a single 
additional phase per relevant loop length, and hence the pitch should be controlled by this 
loop length. 

The key physical idea controlling this effect is that of a relevant loop. The probability of 
an isolated hole cycling around short loops is clearly usually higher than the probability of 
cycling around large loops. One would therefore quite naturally presume that the smallest 
loop controls the physics, and to some extent i t  does. There is, however, a caveat: the 
smallest loops control the physics on their own length scale. For low densities of holes we 
want ferromagnetism around short loops: an infinitesimal spiral ensures ferromagnetism on 
short length scales. For the longer loops, where there is a sizable probabilty of exchange 
of a pair of holes, phases can be introduced into the wavefunction that do not compromise 
the more important small loop motion. 

The path towards a two-dimensional calculation has been designated a two-stage process 
in this article, with an initial jump to infinite-range hopping, and then a second step to a 
competition between the finite- and infinite-range hops. We have successfully overcome the 
first step, and have seen that there is new physics encountered. We have not tackled the 
second step, which could easily completely reverse all our phenomena and replace them 
with something completely dull. The truth is that we only have faith to support our belief 
that these calculations might be relevant to two dimensions. 

The key to our solutions is the fact that we can control the changes in the spin 
wavefunction. When the charges hop over each other, the spin wavefunction changes in 
such a way that the old spin order along the chain i s  reintroduced for the new ordering with 
the spin on the charge that moved being repositioned into its new site along the ordered 
chain of spins. This change in spin wavefunction constitutes a loss in possible kinetic 
energy, as the original hopping-matrix element is reduced by this change. However, the 
change is energetically favourable, because of the reduction in statistical phase cancellation 
that results. It is this competition, when altering the spin wavefunction, between losing 
kinetic energy directly and gaining from enhanced collective phase coherence, that decides 
whether spin-charge separation will be favourable. 

It is instructive to consider what might be expected in two dimensions, at least in simple 
terms. The first main result from increasing the strength of the longer-range hops is that the 
Nagaoka ferromagnetic correlations spread out perpendicular to the one-dimensional chain 
into the second dimension. These correlations become associated with two dimensions, and 
our labelling by order along the one-dimensional chain ceases to be very efficient. This is 
the start of the fundamental difficulty of trying to set up a spin-charge-separated description 
in two dimensions: we might still anticipate that the charged excitations would be collective 
‘slopping about’, but now we would need to slop a two-dimensional ‘patch’, and it  is very 
difficult to invent a labelling scheme that maintains such short-range connectivity between 
the eiectrons in two dimensions and not the atoms: we still need to keep our labels on the 
electrons, but we need to set up a spin wavefunction that correlates electrons close together 
but allows collective motion with the relafive spin correlations held fixed. Although we d o  
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not know how to set up such a description, it does not mean that the physics of the model 
is not controlled by such behaviour. In one dimension we can use the order along the chain 
to ‘rationalize’ the mathematics and this is the reason for the ‘success’ of our analysis. As 
well as our labelling scheme becoming less useful, the way in which the spin wavefunction 
changes becomes much more subtle. The desire to pick up phases when circling loops 
changes dramatically as particles come close to other particles. The spin wavefunction 
becomes a fairly strong function of the local charge configuration. This effect has two 
results: firstly it becomes much more difficult to model the spin wavefunction and secondly 
it becomes much more difficult to tell whether the system is spin-harge separated, because 
in a free Fermi system the spin wavefunction changes wildly as the electrons move about. 

One can still ask whether or not the effects causing the spin<harge separation are 
strengthened or weakened in limiting towards two dimensions: the enhanced probability 
for exchange means that the forces driving the state paramagnetic are stronger, but the 
resulting degree of low-spin correlations attainable is severely reduced, since there are more 
competing neighbours to try to correlate with. It is non-trivial to try to compare the energy 
attainable from collective motion with that from independent motion, and we are unable to 
make progress in two dimensions. 

It would not be surprising if Nagaoka’s theorem did not survive the thermodynamic 
limit. 

M W ,?.on8 et a1 
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